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In this article we will bring together the results of a set of lectures [6] and put them together
as a short introduction to the Unified Interactions Theory. Our approach is based on an algebraic
generalization of two spaces: the spacetime and the action space, which is similar to the spacetime.
Both the spacetime and the action space are provided properties of the tensor algebra. This allows
us to explain a hierarchy of fundamental elementary particles and to make generalizations for them.
The Clifford algebra as a special case of the tensor algebra is associated with leptons. Linear and
bilinear transformations of the tensor algebra are associated with intermediate particles. These
transformations also describe interaction between fundamental and intermediate particles.

I. INTRODUCTION

The Unified Interactions Theory is a hypothetical one
intended to explain facts concerning all kinds of interac-
tions from some universal conceptions, in a unified way.
Here we propose a version of the UIT. Firstly we will
enumerate the most important questions which the UIT
must clarify from our standpoint. And then we will give
our answers.

II. PROBLEMS OF THE UNIFIED
INTERACTIONS THEORY

1. The first question is as follows. Is it possible to
explain that interactions have quantum character? I. e.
why do the quantities that characterize interactions get
discrete values? We mean, first of all, momentum and
energy. Many of the quantum theory founders considered
such a statement of the problem as unproductive. They
said it is enough to calculate values of discrete quantities.
However it is important to clarify the problem for our
understanding of a physical world picture. The problem
stated generates a series of the quantum theory issues.

1.1. An operator is set in correspondence to a physical
quantity. What is the meaning of such an operator?
How is it constructed? For example, why is an
operator

− i~ ∂

∂x
(1)

set in correspondence to the momentum p? Here
i denotes the imaginary unit, ~ is the Planck con-
stant, x is a spatial coordinate.

Let us consider the momentum

p =
∂S

∂x
,

where S is a physical quantity called action. Then it
would be natural to associate the momentum with an
operator

∂

∂x
.

that is applied to a scalar quantity – action.
This implies some additional questions.

1.2. What does the imaginary unit that enters into the
quantum operator mean? Why can not we use an-
other numeric hyper unit here?

1.3. Why does the quantum operator include the Planck
constant having the dimension of action?

1.4. What is the meaning of the quantum postulate say-
ing values of a quantity are eigenvalues of its oper-
ator?

1.5. What is the meaning of the wave function ψ – the
quantity which the quantum operator is applied to?
Why should we consider it as vector of the Hilbert
space – a special space over the complex number
field?

1.6. Why does the wave function require an interpreta-
tion, whereas other physical quantities do not need
any? They signify what they are intended to sig-
nify.

2. The current concept is that existing interactions
can be reduced to interactions of a handful of elementary
particles. We will call such particles fundamental. They
fall into two groups of particles – leptons and quarks.
A remarkable symmetry takes place within each group.
Each group is divided into three subgroups (generations),
two particles (arbitrarily called the top and bottom) in
each.

Hence the UIT should explain the following.

2.1. How do the wave functions of each fundamental
particle differ from each other?

2.2. Why are there two particle groups – leptons and
quarks?

2.3. Why are there exactly three generations of parti-
cles?

2.4. Why does each generation contain exactly two par-
ticles? For example, the first lepton generation in-
cludes electron e and electronic neutrino νe.
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Furthermore, it has been discovered that each quark
type (flavor) exists in three modifications denoted with
a color – red, yellow or blue.

Therefore similar problems arise.

2.5. Why are there exactly three quark colors?

2.6. What is the difference between quark wave func-
tions for the same flavor but different colors?

Moreover, each of the above-mentioned fundamental
particles has an antiparticle.

Hence,

2.7. The UIT should contain concepts and operations
related to an antiparticle as well as to a particle.

3. Particle physics is pinning its hopes on the pene-
tration into the unknown physical world of the supersym-
metry. In this conception, a massive superpartner follow-
ing opposite statistics corresponds to every fundamental
particle. Thus bosons as superparticles correspond to
fermions.

It follows that

3.1. The UIT should include the supersymmetry in a
natural manner.

The following questions remain unanswered.

3.2. Is the correspondence between particles and super-
particles a one-to-one correspondence? For exam-
ple, is there a superpartner for neutrino?

3.3. Are there quantum phenomena in the world of su-
perparticles?

4. The spacetime of special relativity is the arena
where interactions occur. These spacetime transforma-
tions that leave interaction processes invariant are de-
fined as the Poincaré group. The Poincaré group includes
spacetime shifts, geometrical turns, and Lorentz trans-
formations. The speed of light is the Poincaré group
invariant.

This brings up a question: would we construct the
Poincaré group generalization by using the UIT?

For example, this question can be initiated by the fol-
lowing. A free light particle moves in accordance with
the equation

c2dt2 − dx2 = 0.

Here x is the coordinate, t is the time, c is the light
velocity.

Obviously this equation does not describe light particle
kinematics in the emission process. Therefore the above
relation should be modified.

Let us decompose the problem into two questions.

4.1. Should we generalize the spacetime of special rela-
tivity going towards the UIT?

4.2. Should we generalize the group of geometric rota-
tions and Lorentz transformations?

On the spacetime generalization a question arises:

4.3. Do the quantum phenomena extend over this gen-
eralized spacetime?

5. An inner symmetry group corresponds to each kind
of interaction. It transforms the wave function coordi-
nates belonging to its inner space. In addition to these
coordinates, the wave function holds coordinates trans-
formed by the Poincaré group. An elementary particle
spin is explained by the presence of such coordinates.
Let us name the specified coordinate space as the outer
space. In these terms, the outer symmetry group is the
Poincaré group.

Hence the following questions arise.

5.1. What do inner spaces of interactions mean?

5.2. What is the meaning of inner symmetry groups?

5.3. Is there any relation between the outer and inner
spaces?

5.4. Should we search for a superspace containing the
outer and inner spaces?

5.5. Is there any relation between inner spaces of various
interactions?

5.6. Should we construct a superspace containing inner
spaces of various interactions, and, respectively, an
inner symmetry group for all interactions?

6. In the present view, interaction of fundamental par-
ticles is performed through a field. Exactly, interaction
of a particle A with a particle B comes to interaction of
the particle B with a field whose source is the particle A.

Field kinds correspond to interaction classes. The field
quanta are intermediate particles. Fundamental and in-
termediate particles are often mentioned together when
enumerating. However, the essential difference between
particles is veiled: intermediate particles serve as an in-
teraction agent between fundamental particles and them-
selves.

It follows that

6.1. The UIT paradigm should reflect the service role of
intermediate particles.

7. The UIT should answer the questions concerning
interaction classes:

7.1. Why are there four interactions in nature: gravita-
tional, weak, electromagnetic, and strong?

7.2. Why is the set of fundamental particles decreased
from gravitational to strong interaction? Whereas
all fundamental particles are involved in gravita-
tional interaction, the strong interaction is pro-
vided only with hadrons.
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7.3. Why do interactions differ in their power?

8. The gravitation theory stands apart from the elec-
troweak and strong interaction theories.

It is unclear today:

8.1. Should General relativity represent gravitation in
the UIT?

8.2. Which group can be considered as a gravitational
group of inner symmetry?

Here we finish the questions for the UIT. Now we pro-
pound our answers in the context of our UIT variant and
discuss its problems.

III. OUR VARIANT OF UIT: ANSWERS

1. The first set of questions receives answers after the
following generalizations.

• Initially, the spacetime is provided with alge-
braic structure. The vector product is introduced,
through which the spacetime becomes an algebra,
and specifically a tensor algebra.

With respect to covariant basis vectors EI , the
multiplication (composition) rule can be repre-
sented as follows

EI ◦ EK = CIKL · EL , (2)

where CIKL are structure constants (or matrices)
of the algebra.

For regular (adjoint) representation, basis vectors
correspond to structure matrices

EI ∼ CIKL .

The structure matrix number I is an index of the
basis vector which is represented by this matrix.

Hence the generalized nabla operator is:

∇ = EI · ∂

∂xI
∼ CIKL ·

∂

∂xI
, (3)

where xI are generalized spacetime vector coordi-
nates.

• The scalar action is generalized into a vector quan-
tity; moreover it is supposed that the set of action
vectors S also constitutes a tensor algebra.

The vector product in this algebra will be written
as

S =
1

S0
S1 ◦ S2 . (4)

S0 is a constant which has the dimension of action,
and matches the dimensions of the right and left
equation sides. In a particular case this quantity is
supposed to be equal to the Planck constant

S0 = ~ . (5)

1.1. In a simplest case of the so called contracted repre-
sentation, expressions (3), (4), (5) result in classic
quantum operators of physical quantities, and par-
ticularly the momentum operator (1).

1.2. It follows from the product rule of basis vectors (2)
that structure matrices include matrix blocks 2×2:

1

-1
.

They may be identified with the imaginary unit i,
taking into account that

i2 = − 1 ,

where a unit matrix is denoted by 1 .

1

1
.

The imaginary unit thus appears in quantum the-
ory as a result of the algebraic composition law on
the spacetime and the action space.

Note that structure matrices include also the fol-
lowing blocks:

1

1
,

-1

1
.

Identifying these matrices with numbers a and b,
respectively, we should get hypernumbers with uni-
ties

{1 , a, b, i}

and the product rule

a2 = b2 = 1 , i2 = −1 , a b = −b a = i ,

a i = −i a = b , i b = −b i = a .

1.3. It seems unreal that the Planck constant transforms
to the quantum operator from the composition law
(4). It would naturally define the quantum opera-
tor as the nabla operator (3) and assign the Planck
constant to the composition law (4).

1.4. We differentiate the law composition (4) twice and
evaluate d2d1S. Here d1 and d2 are differentials in
the direction of vectors S1 and S2, respectively. We
obtain

d2d1S =
1

~
d1S ◦ d2S . (6)

This expression is a structure equation of action
algebra in vector form.
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Let us introduce a notation

ψ = d1S

and d ∼ d2. Then the structure equation (6) becomes

dψ =
1

~
ψ ◦ dS . (7)

The equation now is in the form of an eigenvalue problem
for the differential operator d.

We have the following result: The structure equation
of the action algebra may be reduced to an eigenvalue
problem for the differential operator d. Therefore, the
quantum postulate is nothing other than the action al-
gebra composition law in the differential form.

1.5. From Eq. (7) it follows that the differential of an
action vector (the quantity ψ) should be identified
as the wave function being introduced in the quan-
tum theory.

The Hilbert space should be considered as a tensor
algebra of action.

1.6. The necessity to interpret the wave function is a
consequence of an underdeveloped quantum the-
ory basis, and illustrates the absence of a quantum
phenomena explanation. The above considerations
explain quantum phenomena by representing the
action as an algebraic quantity (by algebraic struc-
ture of action space).

2. The second set of problems is solved by a detailed
analysis of the tensor action algebra. It is convenient
to illustrate the tensor algebra division into subalgebras
(graphically by means of a diagram named the Young
tree (Fig. 1). Here, figures signify tensors included in the
wave function. The number of cells in the figure signi-
fies the tensor rank. Its own tensor symmetry by the
permutation of indices corresponds to each figure. An
antisymmetric combination of indices corresponds to the
vertical (disposition) arrangement of cells but a symmet-
rical combination of indices corresponds to the horizontal
arrangement. A line connecting a unicellular figure with
one of the four-cellular figures (a trunk), corresponds to
a subalgebra of the tensor algebra.

Thus, each subalgebra includes tensors from the first
to fourth rank with a certain symmetry. It will be noted
that to the leftmost trunk corresponds a subalgebra con-
taining only antisymmetric tensors. This is the Clifford
algebra C4. Restriction by antisymmetric tensors from
one to three ranks, we will achieve the Clifford algebra
C3.

2.1. The fundamental particles are in correspondence
to subalgebras of the tensor algebra. More pre-
cisely the wave functions of fundamental particles
are subalgebra vectors of the tensor algebra, and
differ from each other in their symmetries of ten-
sors which constitute the algebra. For example, the

electron wave function is the vector of the Clifford
algebra C3, and the lepton wave function of one
generation is the vector of the Clifford algebra C4.

All the subalgebras of the tensor algebra at the sec-
ond rank tensor level and respectively the funda-
mental particles are divided into two classes. Wave
functions of the first class particles contain an anti-
symmetric tensor of the second rank and wave func-
tions of the second class particles contain a symmet-
ric tensor of the second rank. The division of fun-
damental particles into two classes corresponds to
such wave function classification: particles with the
spin 1/2 are fermions and particles with the spin 0
are bosons. Leaving aside the last particles for a
while we shall turn our attention to the fermions.
The left branch of the Young tree illustrates subal-
gebras relating to fundamental fermions.

2.2. The fermion subalgebras at the third rank tensor
level are divided into two groups. One of them
includes an antisymmetric tensor of the third rank
and represents the Clifford algebra whose vectors,
according to Dirac, describe leptons. It is natural
to relate the second group of subalgebras to quarks.

Therefore, we may, within the particle classification
by subalgebras of the tensor algebra, explain the
division of fundamental particles with spin into two
sets (groups) leptons and quarks, and also interpret
algebraically such properties as lepton and baryon
charges.

2.3. Let us now turn to the question: Why are there
three generations of particles? We should notice
that for each subalgebra, the wave functions may
differ in the order of their geometric space basis vec-
tors. So, the wave function of the first generation
particles corresponds to the order of indices 123.
Just for this index order the Young tree (Fig. 1)
is shown. Wave functions of the second and third
generation particles correspond to index orders 312
and 231, respectively.

Thus, wave functions of several lepton generations
differ from each other by a cyclic permutation
of three basis vectors of the generating geometric
space. This rule also applies to wave functions of
several quark generations. The difference in mass
of several generation particles testifies that the geo-
metrical space of fundamental particles is probably
inhomogeneous. The reason for the heterogeneity
remains vague.

2.4. Let us now find out why every lepton and quark
generation contains two particles.

The quantum equations for free leptons are divided
into two independent systems of equations. They
may be related to the bottom lepton and its neu-
trino. Hence, the subalgebra for each generation of
leptons relates to the lepton-neutrino pair.
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FIG. 1. Four-level Young tree of the first generation.

The quantum equations for free quarks are also di-
vided into two independent systems of equations.
They may be related to the top and bottom quarks.
Hence, the subalgebra for each generation of quarks
relates to the quark pair.

The wave functions of free leptons and quarks are
divided into two components – the right and the
left. This division allows us to describe electoweak
interaction involving leptons and quarks.

2.5. Tensors of the fourth rank are constructed by
means of the timelike basis vector. The quark alge-
bra at a relativistic level divides into three subal-
gebras by three symmetries of the four-rank tensor.
Each of these subalgebras can be associated with a
quark of a certain color – red, green or blue. So,
in the framework of our particle classification, the
quark color obtains an algebraic interpretation.

2.6. Hence it follows that wave functions of quarks with
the same flavor and different color vary in symme-
tries of four-rank tensors included in these func-
tions.

Let us point out an interesting consequence of the
algebraic classification of fundamental particles. It
concerns leptons. Like quark algebra, the lepton
algebra at the relativistic level is divided into two
subalgebras. It follows that there are two types
of leptons. It is convenient them to designate by
color as white and black leptons. Then it should be
concluded that white and black leptons are related
by short-range forces of a color attraction exceeding
the Coulomb force (for charged leptons).

In particular, these forces are revealed to form elec-
tronic pairs in such phenomena as

• the filling of atomic orbits by electrons,

• the covalent bond,

• the formation of crystal lattice,

• the superconductivity.

2.7. To describe an antiparticle the contravariant ac-
tion algebra is substituted for the covariant one.
Structure matrices in the real presentation are con-
verted to transposed matrices, and structure ma-
trices in the complex presentation are converted to
hermitian-conjugated ones. In particular, charge
matrices change the sign.

3. Let us now consider problems associated with the
supersymmetry. We will choose the boson branch from
the Young tree now. It is shown in Fig. 1 that the subal-
gebra of the boson branch corresponds to each subalgebra
of the fermion branch. That is, each particle with spin 0
corresponds to each particle with spin 1/2.

3.1. So, our algebraic approach results naturally in the
concept of supersymmetry. We call supersymmet-
ric to leptons particles a leptino, and call super-
symmetric to quark particles a quarkino.

Note that this considered supersymmetry concept
differs from the traditional one. Among the super-
particles there are particles neither with integer nor
with fractional spin. The superparticle spin should
be considered as equal to zero. More precisely a
superparticle has no such property as the spin, and
a new dynamic property, in a certain sense, sym-
metric to spin, takes its place. We call the property
an inertia. In the superparticle wave function the
inertia is represented as a second rank symmetric
tensor. Fundamental superparticles do not partic-
ipate in the interactions where fundamental parti-
cles participate except for the gravitation.

In the Young tree (Fig. 1) we specify the direc-
tion of increasing fundamental particle mass from
leptons to quarks, i.e. from left to right. Then
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it should be considered that the quarkino is heav-
ier than the quark, and the leptino is the heaviest
particle. Superparticles do not participate in elec-
tromagnetic interactions. This suggests that super-
particles probably constitute so-called dark matter,
and superfields form dark energy.

3.2. At the relativistic level the quarkino algebra is di-
vided into three subalgebras, the leptino algebra
is divided into two subalgebras. We relate these
three subalgebras to quarkino of three colors – red,
green and blue. We also have to suppose that the
leptino is of two colors – black and white. The
equations for free superparticles can not be divided
into two equation systems. Thus, there is a single
superparticle with the top and the bottom compo-
nents mixed among themselves (for example, there
are not superanalogues of electronic neutrino and
electron).

3.3. The algebraic structure of superparticle action vec-
tors determines the quantum postulates and quan-
tum phenomenon theory of these particles. In su-
perparticles quantum theory, the unity previously
designated as a plays the role of the imaginary unit.
Generally, there is no reason to consider that the
superparticles quantum phenomena use the Plank
constant, rather than some other constant quantity
with dimension of action.

4. Our UIT includes a generalization of the Poincaré
group. Analysis of the Dirac equation shows that every
one of the fundamental particles has its proper spacetime.
This generalizes the spacetime of special relativity.

4.1. The proper spacetime of the fundamental particle
is a subalgebra of the tensor algebra whose space
generator is the spacetime of special relativity. In
particular, the generalized spacetime of white lep-
tons is the Clifford algebra C4. This generalization
is based on involving additional coordinates as in-
dependent spacetime variables.

Besides

• xa geometric coordinates and

• t time coordinate,

new coordinates are used:

• sab coordinates of area (or of rotation angle),

• va speed coordinates,

• V abc coordinates of volume (or of solid angle),

• ωab angular velocity coordinates,

• Ωabc solid angular velocity coordinates,

• s the length of generalized spacetime vector.

Where indices a, b, c take on values 1, 2, 3.

Additional momentum components correspond to
the additional coordinates. Besides

• 3-dimensional momentum pa and

• energy

p4 =
E

c
,

new momentum components are used:

• the 3-dimensional angular momentum

pab =
Mab

R
,

• the 3-dimensional force

pa4 = T fa ,

• the 3-dimensional solid angular momentum

pabc =
Mabc

R
,

• the 3-dimensional angular torque

pab4 =
Fab
c
,

• the solid angular torque

pabc4 =
Fabc
c

,

• the rest momentum p0.

Where R is the fundamental constant of
length, T is the fundamental constant of time.

Standard 4-dimensional special relativity is gener-
alized for the fundamental particle spacetime. For
example, the motion of the light particle satisfies
the equation

c2dt2 − dx2 − c2

A2
dv2 = 0.

Where v is the speed of the light particle, A is the
fundamental constant, so-called maximum acceler-
ation.

4.2. The geometrical rotations and Lorentz transforma-
tions from the Poincaré group are generalized to
rotations about all basis vectors in the generalized
spacetime.

Since a fundamental antiparticle corresponds to
each of the fundamental particles, the conjugate
transformations of antiparticle spacetime can be
included into the invariant transformations. The
above transformations are combined into a general
kinematic algebra which generalizes the classical in-
variant transformation group – the Poincaré group.
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4.3. In contrast with the spacetime of special relativity,
the proper spacetime of a fundamental particle is
an algebra. Therefore this spacetime is quantized.
Initial quantum postulates are the structure equa-
tions of the corresponding algebra.

5. The fifth set of questions will receive answers af-
ter the following considerations. The unit sphere of the
action algebra (the unit is the Planck constant) divides
the algebra definition domain into two parts – inside and
outside the sphere. We will consider that the product
inside the sphere is right :

S = S1 ◦ S2 .

Then the product outside the sphere is left :

(S)−1 = (S2)−1 ◦ (S1)−1 .

5.1. The action algebra domain inside the unit sphere is
identified as an inner space in the sense as it is un-
derstood in elementary particle physics. Such un-
derstanding of the inner space is based on the fact
that the regular representation of basis action alge-
bra vectors with right product leads to the charge
matrices.

5.2. The inner symmetry groups acquire the meaning
of action algebra vector rotations inside the unit
sphere. For example, the symmetry group of elec-
tromagnetic interactions is a group of rotations
about the basis vector e21. It is isomorphic to the
group U(1). The weak interactions group is a group
of rotations around the basis vectors e4 e123, e1324.
It is isomorphic to the group SU(2).

5.3. The action algebra domain outside the unit sphere
is identified as the outer space in the same sense
as in Section II.5. Such understanding of the outer
space is based on the fact that the regular repre-
sentation of basis action algebra vectors with left
product leads to space-time matrices, in particu-
lar, to the Dirac matrices.

5.4. The space enveloping the inner and outer spaces is
the action algebra in the whole definition domain.
The generalized metric tensor is used to change
the outer contravariant space to the inner covariant
space.

5.5. The inner spaces of various interactions are com-
bined in the inner space of the particle being in-
volved in these interactions.

5.6. The question whether we should we search for a
space encompassing the inner spaces of various in-
teraction types and, respectively, an inner symme-
try group encompassing inner symmetry groups of
different interaction types has been answered essen-
tially in items 5.2, 5.5.

6. The sixth set of questions receives answers after the
following considerations.

6.1. The action of an intermediate particle is a linear
transformation operator applied to the action vec-
tors of fundamental particles. The action of an in-
termediate antiparticle is a linear transformation
operator applied to the action vectors of fundamen-
tal antiparticles. The action vectors of an interme-
diate particle compose an algebra. The action vec-
tors of an intermediate antiparticle also compose
an algebra.

Let eI be basis vectors of the fundamental parti-
cle action algebra, and IKL be basis vectors of the
intermediate particle action algebra.

Then, the interaction of fundamental and inter-
mediate particles follows the algebraic composition
law

eI ◦ IKL = δKI · eL .

Where δKI is the Kronecker symbol.

Some considerations compel us to postulate the
existence of intermediate particles of a second
kind. Therefore the above intermediate particles
are named as ones of the first kind.

Let JKLM be the action algebra basis vectors of an
intermediate participle of the second kind. Then
the interaction between fundamental and interme-
diate particles of the second kind results from the
algebraic composition law.

eI ◦ JKLM = δKI · ILM .

It means that the interaction of fundamental and
second kind intermediate particles produce first
kind intermediate particles.

7. The seventh set of problems does not have in essence
any solutions. Only some considerations may be formu-
lated.

7.1. A general group of linear transformations acts on
the inner space. The group is an inner symmetry
group of the general form. Its subgroups define the
interaction types.

7.2. Suppose, the basis rotational vector eα specifies an
inner symmetry group. The index α indicates a
tensor component, and, in particular, the rank of
the tensor included in the fundamental particle ac-
tion. For example, the basis vector e12 relates to
the second rank tensor and the basis vector e4 re-
lates to the first rank tensor. It seems, the general
law is as follows: the higher the tensor rank, the
narrower the set of particles involved in the corre-
sponding interaction.

7.3. The higher the tensor rank, the ”stronger” the in-
teraction.



8

8. The isolation of the general relativity theory as a
theory of the gravitational interaction arises from the fact
that its mathematical basis – the Riemannian space, is
not a vector space supplied with a scalar product. And
this is unacceptable from a physical standpoint. The
matter is that the multiplication of a vector by a number
and the scalar product of vectors are the mathematical
equivalent for the procedure of vector quantity measure-
ment. Hence,

8.1. The attempt to unify the gravitational interaction
with electroweak and strong interactions should be
accompanied by reformulation of the gravitation

theory.

8.2. It is necessary to find an inner symmetry group of
gravitation.

Finally, I do hope that this article will attract the at-
tention of researchers whose train of thought is compat-
ible with the presented considerations.
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